One. Product introduction

By using acoustic media of the tested non-contact and no wear test, Ultrasonic sensors can detect transparency of the object or colored objects, metallic objects or non-metallic objects, as well as solid, liquid or powder material, can detect. Ambient conditions such as smoke, dust environment or under the condition of rain almost does not affect the detection performance of ultrasonic sensor.

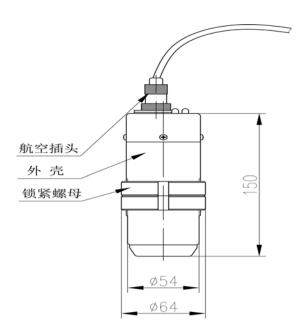
Two. the principle of ultrasonic ranging

Launch of the ultrasonic transducer emit ultrasonic pulse, spread through transmission medium to be measured medium, after reflection by sound transmission medium again returns to the receiving transducer, ultrasonic pulse is measured from the launch to receive in the transmitted time of sound transmission medium. then according to the speed of sound, sound transmission medium can calculate the distance from the transducer to the media. To determine the liquid level. So we can calculate the probe to the reflection surface distance D = C * t / 2 (divided by 2 is because the sound waves from transmitting to receiving actual is a back and forth, D is the distance, C is the velocity of sound, t is the time).

Three. product features

High resolution
Short response time 大馬电子科技有限公司
Digital tube display distance measurement
Through RS 232/485 complete parameter Settings
Abundant output way: switch, analog, RS232/485

Four, the main technical indicators


function	integration
Rang	0.05~0.5m\0.1~1m\0.2~3m\0.3~5m\
	0.4~6m
resolution	3 mm or 0.1% (the greater)
response time	< 200ms
display	LED
Launch Angle	20°
Analog output	4~20mA/500Ω load
Switch output	Relay DC 30 v / 5 a, PNP/NPN
	(optional)
RS232/485	MODBUS protocol or manufacturer to
	custom (optional)
power supply	With 24 v (+ / - 15%)
environment temperature	-20~+60℃
Protection grade	IP65 optional IP67
Installation dimensions	M56*2

Five. the installation guide

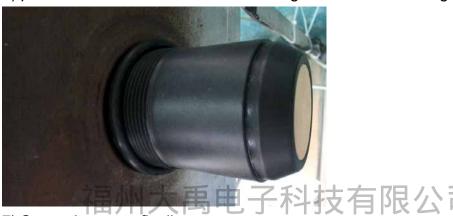
- 5.1 installation considerations
- (1) ultrasonic sensor installation emission surface should be perpendicular to the object to be tested
- (2) the power cord and output don't pick up the signal lines
- 5.2 installation size
- (1) ultrasonic sensor contour diagram:

(2) ultrasonic sensor size

5.3 physical installation

1) fix a flange over the object to be tested

2)put A sheet of same inner diameter of gasket on the flange


4) put the distance sensor into the flange holes

5) saw from the bottom of the flange

6) put A sheet of same inner diameter of gasket under the flange

7) Screw the nut to fix distance sensor

8) Plug cable in distance sensor

5.4 connection mode

The power cord: 24 v + red line; GND by black line Current: the current + take the blue line; Current - pick up the yellow line 485 Communication output::A, pick up the yellow line. B take the blue line

The mode of 232 communication

232 Communication output: "SGND" pick up black line,"TXD" take the blue line,"RXD" connect with yellow line.

Note: the black line must be reliable grounding.

Six. Signal

When the initial power on, power light Chang Liang "green light". When Searching the echo signal, the state of light flashing "red light", when the search to the correct echo, status indicators keep Chang Liang "red light". When normal measurement, digital tube display the actual measured values; When in a state of lost wave, digital tube display"- - - "

Seven. error phenomenon and processing

nhanamanan		colution
phenomenon	reason	solution
Power light green light is not bright	Power is not connected	Check the power cord
Status indicator light	1.tested distance	1.Consider replacement
flashing red	beyond the sensor	of sensors in a wide
	range	range
	2.measured medium	2.when measured
	with Strong	medium restore calm,
	disturbance, severe	device will automatically
	vibration or dust	return to normal
		measurement
	3.With frequency	3.Check the surrounding
	converter, motor and	environment, good
カロ 小川 十一	other strong interference	electromagnetic
福州大	sources 十十文	shielding. Do not share
		the same with frequency
		converter, motor power,
		and ensure the power
		supply reliable
		grounding
	4.The probe measured	4.Reinstall the sensors,
	plane misalignment	perpendicular to the
	5.0	surface to be tested
	5.Space with extra	5.To choose the
	object to be tested, such	appropriate installation
	as feed opening support	position, try to avoid
	bar, and so on	distractions
	6.Interface of measured	6.Raise the sensor
	object was in blind area	installation location
	7.measured medium is	7.Remove bubbles, if it
	the loose powder, or	is powder producers to
	liquid level with foam.	counseling

MODBUS—RTU communication protocol

- 1. The hardware is adopted with RS-485, master-slave half-duplex communication, that is, the host calls the slave address, and the slave answers.
- 2. Data frame: 10 digits, 1 start bit, 8 data bits and 1 stop bit, without verification. Baud rate: 2400, 4800, 9600 and 19200 (9600 by default).
- 3. Function code 03H: Read register value Data sent by the host:

1	2	3	4	5	6	7	8
ADR	03Н	High-order byte of initial register	Low-order byte of initial register	High-order byte of register number	Low-order byte of register number	Low-order byte of CRC code	High-order byte of CRC code

The first byte, ADR: address of slave machine (=001~254)

The second byte 03H: Read the register value function code

The third and fourth bytes: the start address of the register to be read

The fifth and sixth bytes: the number of the register to be read

The seventh and eighth bytes: CRC16 verification from byte 1 to

byte 6

When the slave machine receives correctly, it will send back following values:

		ラ コール コート	十田田	7 43 -	壮大			
1	2	个田3川/	4.5	6,7	XE	M4\ M	M+1	M+2
ADR	03Н	Total number of bytes	Register data 1	Register data 2	000	Register data M	Low-or der byte of CRC code	High-ord er byte of CRC code

The first byte, ADR: address of slave machine (= $001\sim254$)

The second byte 03H: Return to read function code

The third byte: Total number of bytes from 4 to M (included)

Byte from 4 to M: Register data

The M+1 and M+2 bytes: CRC16 verification from byte 1 to byte M

When the slave machine does not receive correctly, it will send back following values:

1	2	3	4	5
ADR	83H	Information code	Low-order byte of CRC code	High-order byte of CRC code

The first byte, ADR: address code of slave machine (=001~254)

The first byte 83H: Register value reading error

The third byte information code: See the table of information code The fourth and fifth bytes: CRC16 verification from byte 1 to byte 3

4. Function code 06H: Write a single register data

Data sent by the host:

1	2	3	4	5	6	7	8
ADR	06 7	High-order byte of register address	Low-order byte of register address	High-order byte of data	Low-order byte of data	Low-order byte of CRC code	High-order byte of CRC code

When the slave machine receives correctly, it will send back following values:

1	2	3	4	5	6	7	8
ADR	06	High-order byte of register	Low-order byte of register	High-order byte of data	Low-order byte of data	Low-order byte of CRC code	High-order byte of CRC code

When the slave machine does not receive correctly, it will send back following values:

1	2	3	4	5
ADR	86H	Error information code	Low-order byte of CRC code	High-order byte of CRC code

The first byte, ADR: address code of slave machine (=001~254)

The first byte 86H: function code of writing error of register number The third byte information code: See the table of information code The fourth and fifth bytes: CRC16 verification from byte 1 to byte 3 5. Function code 10H: Write multiple register numbers in succession Data sent by the host:

1	2	3	4	5	6	7
ADR	10Н	High-order byte of initial register address	Low-order byte of initial register address	High-order byte of register number	Low-order byte of register number	Total number of data bytes

8、9		10、11	N、N+1	N+2	N+3
Register	data	Register data	Register data M	Low-order byte of CRC code	High-order byte of CRC code

When the slave machine receives correctly, it will send back following values:

1	2	3	4	5	6	7	8
ADR	10H	High-order byte of initial register address	Low-order byte of initial register address	High-order byte of register number	Low-order byte of register number	Low-order byte of CRC code	High-order byte of CRC code

When the slave machine does not receive correctly, it will send back following values:

1	2	3	4	5
ADR	90Н	Error information code	Low-order byte of CRC code	High-order byte of CRC code

The first byte, ADR: address code of slave machine (=001~254) The first byte 90H: function code of writing error of register number The third byte information code: See the table of information code The fourth and fifth bytes: CRC16 verification from byte 1 to byte 3

6. Register Definition Table: (Note: Register address coding adopts hexadecimal system.)

Register address	Description	Read Only	Register address	Description	Read Only
0000	Distance/Level instantaneous value (2 bytes MSB first)	1	0001	Analog output instantaneous value (2 bytes MSB first)	1
0002	Instantaneous temperature (2 bytes MSB first)	V	0003	Reserved	
0004	Reserved		0005	Reserved	
0006	Reserved		0007	Reserved	
0008	Reserved		0009	Reserved	
000A	Reserved		000B	Reserved	
000C	Reserved		000D	Reserved	
000E	Reserved		000F	Reserved	
0010	Reserved		0011	Reserved	V
0012	Reserved		0013	Reserved	
0014	Reserved		0015	Reserved	
0016	Reserved小大禹自	子;	科技	Reserved /	
0018	Reserved		0019	Reserved	
001A	Reserved		001B	Reserved	
001C	Reserved		001D	Reserved	
001E	Reserved		001F	Reserved	
0020	Reserved		0021	Reserved	
0022	Alarm 1 value (2 bytes MSB first)		0023	Alarm 1 Diff (2 bytes MSB first)	
0024	Alarm 2 value (2 bytes MSB first)		0025	Alarm 2 Diff (2 bytes MSB first)	
0026	Alarm 3 value (2 bytes MSB first)		0027	Alarm 3 Diff (2 bytes MSB first)	
0028	Alarm 4 value (2 bytes MSB first)		0029	Alarm 4 Diff (2 bytes MSB first)	
002A	Bottom Distance (2 bytes MSB first)		002B	Range-H (2 bytes MSB first)	
002C	Range-L (2 bytes MSB first)		002D	Current set (2 bytes MSB first)	
002E 0030	Blanking (2 bytes MSB first)		002F 0031	Reserved	
0032	Reserved Reserved		0033	Reserved Reserved	
0034	Reserved		0035	Reserved	

			T	
0036	Reserved	0037	Reserved	
0038	Reserved	0039	Reserved	
003A	Tessived	003B	Treser ved	
0000	Reserved	0020	Reserved	
003C	Reserved	003D	Reserved	
003E		003F		
0040	Reserved	0041	Reserved	
0040	Reserved	0041	Reserved	
0042	D 1	0043	D1	
0044	Reserved	0045	Reserved	
	Reserved		Reserved	
0046	Reserved	0047	Reserved	
0048	Reserved	0049	Reserved	
	Reserved		Reserved	
004A	Reserved	004B	Reserved	
004C	Reserved	004C	reserved	
0045	Reserved	0045	Reserved	
004E	Reserved	004F	Reserved	
0050		0051		
0052	Reserved	0053	Reserved	
0002	Reserved		Reserved	
0054	福州大禺电, Reserved	于	Figure 1	
0056	D 1	0057	D 1	
0058	Reserved	0059	Reserved	
	Reserved		Reserved	
005A	Reserved	005B	Reserved	
005C	Reserved	005D	Reserved	
	Alarm 1 mode Alarm 2 mode		Alarm 3 mode Alarm 4 mode	
005E	T	005F		
	Type Selection Unit selection		Algorithm selection Safe level	
0060		0061		
	Transducer Type Damping Rate		Factory reset System	
0062	Nate	0063	reset	
	Baud rate Working		Reserved	
0064	mode	0065		
	Reserved		Reserved	
0066	Pagaryad	0067	Docorried	
0068	Reserved	0069	Reserved	
	Reserved		Reserved	
006A		006B	Phenotype character √	
			Meter address	

Remarks:

(1)

It is indicated by 2 bytes, MSB: (Note: floating-point numbers are rounded by 100 and expressed in hexadecimal)

◆ The returned distance or level value is expressed in cm.

Example: The current instrument address is 1.

Send:

01 03 00 00 00 01 84 0A

Return:

01 03 02 <mark>00 10</mark> b9 88

The two red bytes indicate that the current measurement is 0.16 m (0x0010)

Notes:

Positive and negative identifications: when the measured value and temperature are positive, the highest significant bit of the high byte is 0; when it is negative, the highest significant bit of the high byte is 1;

Examples:

When the current measurement is -0.16 m, figures 01 03 02 80 10 E8 06 return.

2

Measuring mode: 0 -- measuring distance; 1 -- measuring material level

Safe level: =0, hold; =55, minimum; =AA, maximum; =A5, set value

Alarm mode 1, 2, 3, 4: 0 -- close; 1 -- low alarm; 2 -- high alarm

Type Selection: = 0, mm; = 1, cm; = 2, m

Algorithm selection: 0 - special environment 1; 1 -- special environment 2; 2 --

special environment 3; 3 -- special environment 4; 4 -- special environment 5; 5 --

special environment 6; 6 -- special environment 7

Transducer Type: 0 -- option 1; 1 -- option 2; 2 -- option 3; 3 -- option 4; 4 -- option

5; 5 -- option 6; 6 -- option 7; 7 -- option 8; 8 -- option 9;

Damping Rate: 0 -- slow; 1, medium speed; 2 - fast;

Factory reset: 0-No; 1-Yes;

System reset: 0-No; 1-Yes;

Baud rate: 0-2400; 1-4800; 2-9600; 3-19200

Working mode: 0 -- automatic report mode; 1 -- Inquire Mode

(3)

Regional read-write operation of register The first region: 0010 — 0021 read only The second region: 0022 — 005B read-write The third region: 005C — 004B read-write

Within the same region, a parameter can be read (or write) at a time, and all parameters in the region can be read (or write) in batch. It is not allowed to read and write parameters cross regions.

(4)

All reserved registers are currently undefined, reserved for upgrade compatibility.

7. Information code table

Information	Indication
code	
01H	
	Invalid function code
02H	
	Invalid data address
03H	
	Invalid data value
04H	
	CRC16 verification error
05H	
	Correct reception
06H	
	Reception error
07H	
	Parameter error

福州大禹电子科技有限公司